Word Sense Disambiguation by Machine Learning Approach: A Short Survey
نویسنده
چکیده
There is a renewed interest in word sense disambiguation (WSD) as it contributes to various applications in natural language processing. Applications for which WSD is potentially an issue are: Machine Translation, Information Retrieval (IR), QA systems, Dialogue systems,etc. In this paper we survey vector-based methods for WSD in machine learning approache.
منابع مشابه
معرفی رویکردی ماشینی با استفاده از الگوریتم لسک و برچسبدهی نحوی جهت رفع ابهام از معنای کلمات
The present study introduces a machine-based approach for word sense disambiguation (WSD). In Persian, a morphologically complex language, POS tag which lots of homographs are made, one way for doing WSD is allocating the right Part Of Speech (POS) tags to words prior to WSD. Since the frequency of noun and adjective homographs in different Persian POS tag text corpuses is high, POS tag disambi...
متن کاملWord embeddings and recurrent neural networks based on Long-Short Term Memory nodes in supervised biomedical word sense disambiguation
Word sense disambiguation helps identifying the proper sense of ambiguous words in text. With large terminologies such as the UMLS Metathesaurus ambiguities appear and highly effective disambiguation methods are required. Supervised learning algorithm methods are used as one of the approaches to perform disambiguation. Features extracted from the context of an ambiguous word are used to identif...
متن کاملLearning Expressive Models for Word Sense Disambiguation
We present a novel approach to the word sense disambiguation problem which makes use of corpus-based evidence combined with background knowledge. Employing an inductive logic programming algorithm, the approach generates expressive disambiguation rules which exploit several knowledge sources and can also model relations between them. The approach is evaluated in two tasks: identification of the...
متن کاملExemplar-Based Word Sense Disambiguation" Some Recent Improvements
In this paper, we report recent improvements to the exemplar-based learning approach for word sense disambiguation that have achieved higher disambiguation accuracy. By using a larger value of k, the number of nearest neighbors to use for determining the class of a test example, and through 10-fold cross validation to automatically determine the best k, we have obtained improved disambiguation ...
متن کاملDomain Adaptation with Active Learning for Word Sense Disambiguation
When a word sense disambiguation (WSD) system is trained on one domain but applied to a different domain, a drop in accuracy is frequently observed. This highlights the importance of domain adaptation for word sense disambiguation. In this paper, we first show that an active learning approach can be successfully used to perform domain adaptation of WSD systems. Then, by using the predominant se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Fundam. Inform.
دوره 64 شماره
صفحات -
تاریخ انتشار 2005